COMPOSITION OF ESSENTIAL OILS OF SOME LIPIDOTE RHODODENDRONS

ROBERT P. DOSS, WILLIAM H. HATHEWAY* and BJORN F. HRUTFIORD*

Horticultural Crops Research Unit, USDA-ARS, 3420 N.W. Orchard Ave., Corvallis, OR 97330, U.S.A.; *College of Forest Resources, University of Washington, Seattle, WA 98195, U.S.A.

(Received 15 October 1985)

Key Word Index-Rhododendron; Ericaceae; essential oil; terpenes.

Abstract—Essential oils from leaves of 43 species of Rhododendron comprising 21 subsections were generally complex, and contained a number of compounds that were not identified. Caryophyllene, humulene, and one or more eudesmol isomers were the most commonly identified constituents. α -Pinene was the major component in eight of the oils, and germacrone was the major component in five of the oils. Monoterpenes were the major components of the oils in eight of the 12 species of subsection Triflora that were examined. Sesquiterpenes were major components in about 80% of the other 31 species.

INTRODUCTION

The foliar scales of the lepidote rhododendrons contain essential oils that may function as insect feeding deterrents or repellents [1, 2]. Some of the compounds present in the oils have been identified with only a few species [1-7], the medicinal plant R. dauricum L. being the most thoroughly investigated [5, 7].

Reported below are the results of a study undertaken to learn something about the composition of the essential oils of 43 species of *Rhododendron* representing 21 of the lepidote subsections.

RESULTS AND DISCUSSION

Table 1 lists the compounds detected in the steam distillate from 43 species of *Rhododendron*. The numbers are estimates of percent composition. The essential oils were generally complex and, in most cases, only a fraction of the components could be identified. The most commonly identified compound was caryophyllene, which was found in oils from 23 species. This material has not previously been identified from *Rhododendron*. α-Humulene and the three eudesmol isomers were also common constituents of the volatile fraction.

In general, sesquiterpenes were prominent components of the oils. Germacrone, previously identified from several Rhododendron species [2, 4–7] was the major compound from five species representing several taxonomically distinct subsections. β -Elemenone may be a component of some oils, but this compound can also arise as an artifact as germacrone is subjected to gas chromatography [Doss, unpublished]. Monoterpenes were not detected in oils from those species where germacrone was the major compound.

Limonene [6, 7] and menthol [5], previously reported from R. dauricum, were not detected in oils from any of the species studied here. Neither were 3-carene, α -phellandrene, nonanal [6] or citronellol detected in any of the extracts.

Among a 12-species sample of subsection *Triflora*, monoterpenes represented the major components with eight species. α -Pinene was the most prominent compound with four of these. Camphene was detected only in oils from this subsection. Sesquiterpene compounds (many unidentified) were the major components of oils from all but two of the species of subsection *Lapponica* that were analysed.

There is controversy concerning the taxonomic treatment of the lepidote rhododendrons [8], and it would be helpful if essential oil profiles could be used chemotaxonomically. Before this will be possible, more complete analysis will be required and many, as yet unidentified compounds, must be characterized. The complexity of the essential oils suggests that they may have taxonomic value at several levels.

EXPERIMENTAL

Plant material. Species were chosen to represent as many subsections as possible. Choice of species within a subsection was made primarily on the basis of availability. Leaves were collected in the spring of 1983 and 1984 from plants growing at the Rhododendron Species Foundation at Federal Way, Washington, USA. Clone numbers are indicated in Table 1. Leaves were stored at -10° until extraction.

Extraction. Essential oils were extracted into hexane using a modified Nielsen-Kryger apparatus [9]. The hexane extract was dried over molecular sieve 4a, and an aliquot was coned so that major compounds would give one-quarter to full scale peaks when subjected to GC under conditions used for the analyses.

Gas chromatography. GC was carried out using 1.9 m \times 3 mm glass columns. SP2100 and SP1000 liquid phases were used. Injector and FID were held at 260°. Column temp, was programmed from 60 to 200° with a rate of 7°/min, and initial and final holds of 2 min. Identification was made on the basis of cochromatography with authentic compounds. Although this method of identification was not without possibility of error, it was convenient and inexpensive, and, because liquid phases of

Table 1. Components present in essential oils from 43 Rhododendron species

Species	Clone	Subsection	Total pcaks	cam- phene	α- pinene	β- pinene	β- myrcene	1,8- cincole
R. edgeworthii Hooker	65.383	Edgeworthia	18					
R. ciliatum Hooker	65.352	Maddenia	12					
R. moupinense Franchet	74.83	Moupinensia	09					
R. hanceanum Hemsley	76.34	Tephropepla	03					
R. tatsienense Franchet	70.422	Triflora	06		68*	20		
R. rigidim Franchet	73.353	Triflora	07					
R. keiskei Miquel	76.40	Triflora	13					
R. concinnum Hemsley	73.70	Triflora	17	06			27*	
R. lutescens Franchet	70.107	Triflora	12					
R. bauhiniiflorum Hutch.†	73.26	Triflora	10	20*	05			
R. trichanthum Rehder	73.280	Triffora	07		06	15		62*
R. augustinii Hemsley	77.207	Triflora	18		16*			
R. triflorum Hooker	70.26	Triflora	13			08		
R. zaleucum Balf. f. & W. Sm.	65.405	Triflora	13	13	40*			
R. davidsonianum Rehd. & Wilson	66.600	Triflora	08		35*	23		
R. yunnanense Franchet	70.333	Triflora	11				34*	
R. scabrifolium Franchet	70.155	Scabrifolia	03		90*	01	10	
R. rubiginosum Franchet	73.130	Heliolepida	15					
R. carolinianum Rehder	75.133	Caroliniana	09					
R. dauricum L.	66.590	Rhodorastra	11					
R. chryseum Balf. f. & Ward‡	75.28	Lapponica	17		19			
R. hippophaeoides Balf. f. & Ward	73.135	Lapponica	20					
R. paludosum Hutch.§	65.457	Lapponica	09		03	07		
R. cuneatum Sm.	65.497	Lapponica	14					
R. polycladum Franchet	65.459	Lapponica	16					
R. nivale Hooker	76.300	Lapponica	16					
R. rusatum Balf. f. & Forr.	73.245	Lapponica	17		20*		06	
R. impeditum Balf. f. & W. W. Sm.	76.102	Lapponica	18		11	03	04	
R. dasypetalum Balf. f. & Forr.	74.70	Lapponica	12					
R. intricatum Franchet	73.144	Lapponica	08					
R. capitatum Maxim.	74.64	Lapponica	09		32	47*		
R. ferrugineum L.	76.381	Rhododendron	18		20*	15		
R. micranthum Turcz	76.3 99	Micrantha	09			16		
R. calostrotum Balf. f. & Ward	66.573		20					
R. pemakoense Ward	70.42	Uniflora	10		06	09		
R. xanthocodon Hutch.	73.305	Cinnabarina	18					
R. virgatum Hooker	65.404	Virgata	11					
R. glaucophyllum Rehder	76.98	Glauca	16				20	
R. glaucophyllum (var. luteoflorum) Rehder¶		Glauca	12					
R. camphylogynum Franchet	74.62	Camphylogyna	12				08	
R. lepidotum Wallich	79.53	Lepidota	13		50	22		
R. baileyi Balf	64.146	•	13					
R. leucaspis Tagg	65.398	Boothia	03					
R. rubrolineatum Balf. f. & Forr.**	76.205	Trichoclada	08		19	14		18

^{*}Largest peak in extract.

[†] R. bauhiniistorum is considered a variety of R. tristorum Hooker by some authors [10].

[‡]R. chryseum is considered a variety of R. rupicola W. W. Sm. by some authors [10].

[§]R. paludosum is considered to be the same as R. nivale Hooker, subspecies nivale by some authors [10].

R. xanthocodon is considered a subspecies of R. cinnabarinum by some authors [10].

R. glaucophyllum var. luteiflorum is considered to be R. luteiflorum Cullen by some authors [10].

^{**} R. rubrolineatum is considered a variety of R. mekongense Franchet by some authors [10].

linalool	α-terpi neal	geraniol	caryo- phyllene	α-humu lene	cis-nero lidol	trans- nerolidol	β-eleme- none	γ-cudes- mol	α/β- cudesmol	germa- crone	farneso isomer:
				02	01		10	01	03	26*	01
			28	05						03	45*
			15						10		
				39							
06	04										
				30	09	06		04	07		01
									02	01	03
			04	06			09		03	05	02
			13	06		18					
				01							
			03				08				
			18								
			24	01		01					01
			08	06							
			02								
			14								
						10	30	01	07	46*	01
			02			01	09	06	11	49*	
			09		14			02	03		
			09	04		18	17	18	19	39*	07
			01	07							
				30*					17		
					02		08	11	09	01	
			03	05		05	08	07		13	03
		15									
	01		08	07		17*	14	05	06	11	02
					06	04		02	14	02	
			06		03				25		
				02							
		01									
			03						09		
			02	11	07	08	04	07	09	08	05
							10	07	03		
			38	02	03	09		08	10		12
								04	07		
			03	09	06	04	05	02	05	28*	
				05	03	60*		02	_		
			01						03		
			12	09				02			
				04							

1640 R. P. Doss et al.

greatly different McReynolds constants were used, quite reliable. An electrometer setting of 10⁻⁹ AFS was used for all analyses.

Acknowledgements—We thank the American Rhododendron Society for financial assistance and the Rhododendron Species Foundation for allowing collection of plant material. Technical help from Mrs. K. R. Riley and Mr. J. K. Christian is appreciated.

REFERENCES

- 1. Doss, R. P. (1984) J. Chem. Ecol. 12, 1787.
- Doss, R. P., Luthi, R. and Hrutfiord, B. F. (1980) Phytochemistry 19, 2379.
- 3. Pizulevskii, G. V. and Belova, N. V. (1960) Proc. All Union

- Conf. Chem. Terpenoids, Vil'nyus.
- Pizulevskii, G. V. and Belova, N. V. (1964) Zh. Obsch. Khim. 34, 1344.
- Hsu, C. C. and Yu, T.-C. (1976) Hua Hsueh Hseuh Pao 34, 275 [see Chem. Abstr. (1978) 88, 60139d].
- Lab. Resources, Qinghai Sheng Inst. Biol. Lab. Phytochem. Inst. Bot., Acad. Sinica (1978) Acta. Bot. Sin. 20, 135.
- Ma, Y.-P., Sun, S.-W. and Wu, C. S. (1983) Acta Bot. Sin. 25, 563
- Davidian, H. H. (1982) The Rhododendron Species V. I. Lepidotes. Timber Press, Portland, OR.
- Veith, G. D. and Kiwus, L. M. (1977) Bull. Environ. Contam. Toxicol. 17, 631.
- Cullen, J. and Chamberlain, D. F. (1978) Notes R. Bot. Gard. Edinburgh 36, 105.